
Software Project Management

 1

UNIT – II
The old way and the new: The principles of conventional software Engineering, principles of modern
software management, transitioning to an iterative process.
Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition
phases.
Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic
artifacts.

4. THE OLD WAY AND THE NEW
4.1 THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

1.Make quality #1. Quality must be quantified and mechanisms put into place to motivate its achievement
2.High-quality software is possible. Techniques that have been demonstrated to increase quality include
involving the customer, prototyping, simplifying design, conducting inspections, and hiring the best people
3.Give products to customers early. No matter how hard you try to learn users' needs during the requirements
phase, the most effective way to determine real needs is to give users a product and let them play with it
4.Determine the problem before writing the requirements. When faced with what they believe is a problem,
most engineers rush to offer a solution. Before you try to solve a problem, be sure to explore all the alternatives
and don't be blinded by the obvious solution
5.Evaluate design alternatives. After the requirements are agreed upon, you must examine a variety of
architectures and algorithms. You certainly do not want to use” architecture" simply because it was used in the
requirements specification.
6.Use an appropriate process model. Each project must select a process that makes ·the most sense for that
project on the basis of corporate culture, willingness to take risks, application area, volatility of requirements,
and the extent to which requirements are well understood.
7.Use different languages for different phases. Our industry's eternal thirst for simple solutions to complex
problems has driven many to declare that the best development method is one that uses the same notation
throughout the life cycle.
8.Minimize intellectual distance. To minimize intellectual distance, the software's structure should be as close
as possible to the real-world structure
9.Put techniques before tools. An undisciplined software engineer with a tool becomes a dangerous,
undisciplined software engineer
10.Get it right before you make it faster. It is far easier to make a working program run faster than it is to
make a fast program work. Don't worry about optimization during initial coding
11.Inspect code. Inspecting the detailed design and code is a much better way to find errors than testing
12.Good management is more important than good technology. Good management motivates people to do
their best, but there are no universal "right" styles of management.
13.People are the key to success. Highly skilled people with appropriate experience, talent, and training are
key.
14.Follow with care. Just because everybody is doing something does not make it right for you. It may be
right, but you must carefully assess its applicability to your environment.
15.Take responsibility. When a bridge collapses we ask, "What did the engineers do wrong?" Even when
software fails, we rarely ask this. The fact is that in any engineering discipline, the best methods can be used to
produce awful designs, and the most antiquated methods to produce elegant designs.
16.Understand the customer's priorities. It is possible the customer would tolerate 90% of the functionality
delivered late if they could have 10% of it on time.
17.The more they see, the more they need. The more functionality (or performance) you provide a user, the
more functionality (or performance) the user wants.
18. Plan to throw one away. One of the most important critical success factors is whether or not a product is

entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first
time.

19. Design for change. The architectures, components, and specification techniques you use must

Software Project Management

 2

accommodate change.
20. Design without documentation is not design. I have often heard software engineers say, "I have finished

the design. All that is left is the documentation. "
21. Use tools, but be realistic. Software tools make their users more efficient.
22. Avoid tricks. Many programmers love to create programs with tricks constructs that perform a function

correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code
23. Encapsulate. Information-hiding is a simple, proven concept that results in software that is easier to

test and much easier to maintain.
24. Use coupling and cohesion. Coupling and cohesion are the best ways to measure software's inherent

maintainability and adaptability
25. Use the McCabe complexity measure. Although there are many metrics available to report the inherent

complexity of software, none is as intuitive and easy to use as Tom McCabe's
26.Don't test your own software. Software developers should never be the primary testers of their own
software.
27.Analyze causes for errors. It is far more cost-effective to reduce the effect of an error by preventing it than
it is to find and fix it. One way to do this is to analyze the causes of errors as they are detected
28.Realize that software's entropy increases. Any software system that undergoes continuous change will
grow in complexity and will become more and more disorganized
29.People and time are not interchangeable. Measuring a project solely by person-months makes little sense
30.Expect excellence. Your employees will do much better if you have high expectations for them.

4.2 THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

Top 10 principles of modern software management are. (The first five, which are the main themes of my definition of an
iterative process, are summarized in Figure 4-1.)

Base the process on an architecture-first approach. This requires that a demonstrable balance be
achieved among the driving requirements, the architecturally significant design decisions, and the life-
cycle plans before the resources are committed for full-scale development.

Establish an iterative life-cycle process that confronts risk early. With today's sophisticated software
systems, it is not possible to define the entire problem, design the entire solution, build the software,
and then test the end product in sequence. Instead, an iterative process that refines the problem
understanding, an effective solution, and an effective plan over several iterations encourages a balanced
treatment of all stakeholder objectives. Major risks must be addressed early to increase predictability
and avoid expensive downstream scrap and rework.

Transition design methods to emphasize component-based development. Moving from a line-of-code
mentality to a component-based mentality is necessary to reduce the amount of human-generated source
code and custom development.

4. Establish a change management environment. The dynamics of iterative development,
 including concurrent workflows by different teams working on shared artifacts, necessitates
objectively controlled baselines.

Software Project Management

 3

 5. Enhance change freedom through tools that support round-trip engineering. Round-trip
engineering is the environment support necessary to automate and synchronize
 engineering information in different formats(such as requirements specifications, design models,
source code, executable code, test cases).
 6. Capture design artifacts in rigorous, model-based notation. A model based approach (such as
UML) supports the evolution of semantically rich graphical and textual design notations.
 7. Instrument the process for objective quality control and progress assessment. Life-cycle
assessment of the progress and the quality of all intermediate products must be integrated into the process.

8. Use a demonstration-based approach to assess intermediate artifacts.
9. Plan intermediate releases in groups of usage scenarios with evolving levels of detail. It is

essential that the software management process drive toward early and continuous demonstrations
within the operational context of the system, namely its use cases.

10. Establish a configurable process that is economically scalable. No single process is suitable
for all software developments.

Table 4-1 maps top 10 risks of the conventional process to the key attributes and principles of a modern
process

Software Project Management

 4

4.3 TRANSITIONING TO AN ITERATIVE PROCESS

Modern software development processes have moved away from the conventional waterfall model, in which
each stage of the development process is dependent on completion of the previous stage.

The economic benefits inherent in transitioning from the conventional waterfall model to an iterative
development process are significant but difficult to quantify. As one benchmark of the expected economic
impact of process improvement, consider the process exponent parameters of the COCOMO II model.
(Appendix B provides more detail on the COCOMO model) This exponent can range from 1.01 (virtually no
diseconomy of scale) to 1.26 (significant diseconomy of scale). The parameters that govern the value of the
process exponent are application precedentedness, process flexibility, architecture risk resolution, team
cohesion, and software process maturity.

The following paragraphs map the process exponent parameters of CO COMO II to my top 10
principles of a modern process.

 Application precedentedness. Domain experience is a critical factor in understanding how to plan and
execute a software development project. For unprecedented systems, one of the key goals is to confront
risks and establish early precedents, even if they are incomplete or experimental. This is one of the
primary reasons that the software industry has moved to an iterative life-cycle process. Early iterations
in the life cycle establish precedents from which the product, the process, and the plans can be elab-
orated in evolving levels of detail.

 Process flexibility. Development of modern software is characterized by such a broad solution space
and so many interrelated concerns that there is a paramount need for continuous incorporation of
changes. These changes may be inherent in the problem understanding, the solution space, or the plans.
Project artifacts must be supported by efficient change management commensurate with project
needs. A configurable process that allows a common framework to be adapted across a range of
projects is necessary to achieve a software return on investment.

 Architecture risk resolution. Architecture-first development is a crucial theme underlying a
successful iterative development process. A project team develops and stabilizes architecture before

Software Project Management

 5

developing all the components that make up the entire suite of applications components. An
architecture-first and component-based development approach forces the infrastructure, common
mechanisms, and control mechanisms to be elaborated early in the life cycle and drives all component
make/buy decisions into the architecture process.

 Team cohesion. Successful teams are cohesive, and cohesive teams are successful. Successful teams
and cohesive teams share common objectives and priorities. Advances in technology (such as
programming languages, UML, and visual modeling) have enabled more rigorous and understandable
notations for communicating software engineering information, particularly in the requirements and
design artifacts that previously were ad hoc and based completely on paper exchange. These model-
based formats have also enabled the round-trip engineering support needed to establish change
freedom sufficient for evolving design representations.

 Software process maturity. The Software Engineering Institute's Capability Maturity Model (CMM)
is a well-accepted benchmark for software process assessment. One of key themes is that truly mature
processes are enabled through an integrated environment that provides the appropriate level of automa-
tion to instrument the process for objective quality control.

Important questions

1. Explain briefly Waterfall model. Also explain Conventional s/w management performance?

2. Define Software Economics. Also explain Pragmatic s/w cost estimation?

3. Explain Important trends in improving Software economics?

4. Explain five staffing principal offered by Boehm. Also explain Peer Inspections?

5.. Explain principles of conventional software engineering?

6. Explain briefly principles of modern software management

5. Life cycle phases
Characteristic of a successful software development process is the well-defined separation between "research
and development" activities and "production" activities. Most unsuccessful projects exhibit one of the
following characteristics:

 An overemphasis on research and development
 An overemphasis on production.

Successful modern projects-and even successful projects developed under the conventional process-tend to
have a very well-defined project milestone when there is a noticeable transition from a research attitude to a
production attitude. Earlier phases focus on achieving functionality. Later phases revolve around achieving a
product that can be shipped to a customer, with explicit attention to robustness, performance, and finish.
A modern software development process must be defined to support the following:

 Evolution of the plans, requirements, and architecture, together with well defined synchronization
points

 Risk management and objective measures of progress and quality
 Evolution of system capabilities through demonstrations of increasing functionality

Software Project Management

 6

5.1 ENGINEERING AND PRODUCTION STAGES

 To achieve economies of scale and higher returns on investment, we must move toward a software
manufacturing process driven by technological improvements in process automation and component-based
development. Two stages of the life cycle are:

1. The engineering stage, driven by less predictable but smaller teams doing design and synthesis
activities

2. The production stage, driven by more predictable but larger teams doing construction, test, and
deployment activities

The transition between engineering and production is a crucial event for the various stakeholders. The
production plan has been agreed upon, and there is a good enough understanding of the problem and the
solution that all stakeholders can make a firm commitment to go ahead with production.
Engineering stage is decomposed into two distinct phases, inception and elaboration, and the production
stage into construction and transition. These four phases of the life-cycle process are loosely mapped to the
conceptual framework of the spiral model as shown in Figure 5-1

5.2 INCEPTION PHASE
The overriding goal of the inception phase is to achieve concurrence among stakeholders on the life-cycle
objectives for the project.

PRIMARY OBJECTIVES

Software Project Management

 7

 Establishing the project's software scope and boundary conditions, including an operational
concept, acceptance criteria, and a clear understanding of what is and is not intended to be in the
product

 Discriminating the critical use cases of the system and the primary scenarios of operation that will
drive the major design trade-offs

 Demonstrating at least one candidate architecture against some of the primary scenanos
 Estimating the cost and schedule for the entire project (including detailed estimates for the

elaboration phase)
 Estimating potential risks (sources of unpredictability)

ESSENTIAL ACTMTIES
 Formulating the scope of the project. The information repository should be sufficient to define the

problem space and derive the acceptance criteria for the end product.
 Synthesizing the architecture. An information repository is created that is sufficient to demonstrate

the feasibility of at least one candidate architecture and an, initial baseline of make/buy decisions
so that the cost, schedule, and resource estimates can be derived.

 Planning and preparing a business case. Alternatives for risk management, staffing, iteration plans,
and cost/schedule/profitability trade-offs are evaluated.

PRIMARY EVALUATION CRITERIA
 Do all stakeholders concur on the scope definition and cost and schedule estimates?
 Are requirements understood, as evidenced by the fidelity of the critical use cases?
 Are the cost and schedule estimates, priorities, risks, and development processes credible?
 Do the depth and breadth of an architecture prototype demonstrate the preceding criteria? (The

primary value of prototyping candidate architecture is to provide a vehicle for understanding the
scope and assessing the credibility of the development group in solving the particular technical
problem.)

 Are actual resource expenditures versus planned expenditures acceptable

5.2 ELABORATION PHASE

At the end of this phase, the "engineering" is considered complete. The elaboration phase activities must
ensure that the architecture, requirements, and plans are stable enough, and the risks sufficiently mitigated,
that the cost and schedule for the completion of the development can be predicted within an acceptable
range. During the elaboration phase, an executable architecture prototype is built in one or more iterations,
depending on the scope, size, & risk.

PRIMARY OBJECTIVES

 Baselining the architecture as rapidly as practical (establishing a configuration-managed snapshot in
which all changes are rationalized, tracked, and maintained)

 Baselining the vision
 Baselining a high-fidelity plan for the construction phase
 Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonable

time

ESSENTIAL ACTIVITIES

 Elaborating the vision.

Software Project Management

 8

 Elaborating the process and infrastructure.
 Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA

 Is the vision stable?
 Is the architecture stable?
 Does the executable demonstration show that the major risk elements have been addressed and credibly

resolved?
 Is the construction phase plan of sufficient fidelity, and is it backed up with a credible basis of

estimate?
 Do all stakeholders agree that the current vision can be met if the current plan is executed to develop

the complete system in the context of the current architecture?
 Are actual resource expenditures versus planned expenditures acceptable?

 5.4 CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated into the application,
and all features are thoroughly tested. Newly developed software is integrated where required. The construction phase
represents a production process, in which emphasis is placed on managing resources and controlling operations to optimize
costs, schedules, and quality.

PRIMARY OBJECTIVES
 Minimizing development costs by optimizing resources and avoiding unnecessary scrap and

rework
 Achieving adequate quality as rapidly as practical
 Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

ESSENTIAL ACTIVITIES

 Resource management, control, and process optimization
 Complete component development and testing against evaluation criteria
 Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA
 Is this product baseline mature enough to be deployed in the user community? (Existing defects are

not obstacles to achieving the purpose of the next release.)
 Is this product baseline stable enough to be deployed in the user community? (Pending changes are

not obstacles to achieving the purpose of the next release.)
 Are the stakeholders ready for transition to the user community?
 Are actual resource expenditures versus planned expenditures acceptable?

 5.5 TRANSITION PHASE
The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain.
This typically requires that a usable subset of the system has been achieved with acceptable quality levels
and user documentation so that transition to the user will provide positive results. This phase could include

Software Project Management

 9

any of the following activities:

1. Beta testing to validate the new system against user expectations
2. Beta testing and parallel operation relative to a legacy system it is replacing
3. Conversion of operational databases
4. Training of users and maintainers

The transition phase concludes when the deployment baseline has achieved the complete vision.

PRIMARY OBJECTIVES
 Achieving user self-supportability
 Achieving stakeholder concurrence that deployment baselines are complete and consistent with the

evaluation criteria of the vision
 Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES
 Synchronization and integration of concurrent construction increments into consistent deployment

baselines
 Deployment-specific engineering (cutover, commercial packaging and production, sales rollout kit

development, field personnel training)
 Assessment of deployment baselines against the complete vision and acceptance criteria in the

requirements set

EVALUATION CRITERIA
 Is the user satisfied?
 Are actual resource expenditures versus planned expenditures acceptable?

6. Artifacts of the process

6.1 THE ARTIFACT SETS
To make the development of a complete software system manageable, distinct collections of information are
organized into artifact sets. Artifact represents cohesive information that typically is developed and reviewed
as a single entity.

Life-cycle software artifacts are organized into five distinct sets that are roughly partitioned by the
underlying language of the set: management (ad hoc textual formats), requirements (organized text and
models of the problem space), design (models of the solution space), implementation (human-readable
programming language and associated source files), and deployment (machine-process able languages and
associated files). The artifact sets are shown in Figure 6-1.

Software Project Management

 10

6.1.1 THE MANAGEMENT SET
The management set captures the artifacts associated with process planning and execution. These
artifacts use ad hoc notations, including text, graphics, or whatever representation is required to capture
the "contracts" among project personnel (project management, architects, developers, testers, marketers,
administrators), among stakeholders (funding authority, user, software project manager, organization
manager, regulatory agency), and between project personnel and stakeholders. Specific artifacts
included in this set are the work breakdown structure (activity breakdown and financial tracking
mechanism), the business case (cost, schedule, profit expectations), the release specifications (scope,
plan, objectives for release baselines), the software development plan (project process instance), the
release descriptions (results of release baselines), the status assessments (periodic snapshots of project
progress), the software change orders (descriptions of discrete baseline changes), the deployment docu-
ments (cutover plan, training course, sales rollout kit), and the environment (hardware and software
tools, process automation, & documentation).
Management set artifacts are evaluated, assessed, and measured through a combination of the following:

 Relevant stakeholder review
 Analysis of changes between the current version of the artifact and previous versions
 Major milestone demonstrations of the balance among all artifacts and, in particular, the accuracy

of the business case and vision artifacts

6.1.2 THE ENGINEERING SETS
The engineering sets consist of the requirements set, the design set, the implementation set, and the
deployment set.

Requirements Set

Requirements artifacts are evaluated, assessed, and measured through a combination of the following:

 Analysis of consistency with the release specifications of the management set
 Analysis of consistency between the vision and the requirements models
 Mapping against the design, implementation, and deployment sets to evaluate the consistency and

completeness and the semantic balance between information in the different sets

Software Project Management

 11

 Analysis of changes between the current version of requirements artifacts and previous versions
(scrap, rework, and defect elimination trends)

 Subjective review of other dimensions of quality

Design Set
UML notation is used to engineer the design models for the solution. The design set contains varying

levels of abstraction that represent the components of the solution space (their identities, attributes, static
relationships, dynamic interactions). The design set is evaluated, assessed, and measured through a
combination of the following:

 Analysis of the internal consistency and quality of the design model
 Analysis of consistency with the requirements models
 Translation into implementation and deployment sets and notations (for example, traceability,

source code generation, compilation, linking) to evaluate the consistency and completeness and the
semantic balance between information in the sets

 Analysis of changes between the current version of the design model and previous versions (scrap,
rework, and defect elimination trends)

 Subjective review of other dimensions of quality
Implementation set
The implementation set includes source code (programming language notations) that represents the tangible
implementations of components (their form, interface, and dependency relationships)

Implementation sets are human-readable formats that are evaluated, assessed, and measured through a
combination of the following:

 Analysis of consistency with the design models
 Translation into deployment set notations (for example, compilation and linking) to evaluate the

consistency and completeness among artifact sets
 Assessment of component source or executable files against relevant evaluation criteria through

inspection, analysis, demonstration, or testing
 Execution of stand-alone component test cases that automatically compare expected results with

actual results
 Analysis of changes between the current version of the implementation set and previous versions

(scrap, rework, and defect elimination trends)
 Subjective review of other dimensions of quality

Deployment Set
The deployment set includes user deliverables and machine language notations, executable software, and the
build scripts, installation scripts, and executable target specific data necessary to use the product in its target
environment.
Deployment sets are evaluated, assessed, and measured through a combination of the following:

 Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate
the consistency and completeness and the~ semantic balance between information in the two sets

 Testing the partitioning, replication, and allocation strategies in mapping components of the
implementation set to physical resources of the deployment system (platform type, number,
network topology)

 Testing against the defined usage scenarios in the user manual such as installation, user-oriented

Software Project Management

 12

dynamic reconfiguration, mainstream usage, and anomaly management
 Analysis of changes between the current version of the deployment set and previous versions

(defect elimination trends, performance changes)
 Subjective review of other dimensions of quality

Each artifact set is the predominant development focus of one phase of the life cycle; the other sets take on
check and balance roles. As illustrated in Figure 6-2, each phase has a predominant focus: Requirements are
the focus of the inception phase; design, the elaboration phase; implementation, the construction phase; and
deployment, the transition phase. The management artifacts also evolve, but at a fairly constant level across
the life cycle.

Most of today's software development tools map closely to one of the five artifact sets.
1. Management: scheduling, workflow, defect tracking, change management,

documentation, spreadsheet, resource management, and presentation tools
2. Requirements: requirements management tools
3. Design: visual modeling tools
4. Implementation: compiler/debugger tools, code analysis tools, test coverage analysis tools, and test

management tools
5. Deployment: test coverage and test automation tools, network management tools, commercial

components (operating systems, GUIs, RDBMS, networks, middleware), and installation tools.

Implementation Set versus Deployment Set
The separation of the implementation set (source code) from the deployment set (executable code) is
important because there are very different concerns with each set. The structure of the information delivered
to the user (and typically the test organization) is very different from the structure of the source code
information. Engineering decisions that have an impact on the quality of the deployment set but are relatively
incomprehensible in the design and implementation sets include the following:

 Dynamically reconfigurable parameters (buffer sizes, color palettes, number of servers, number of
simultaneous clients, data files, run-time parameters)

 Effects of compiler/link optimizations (such as space optimization versus speed optimization)
 Performance under certain allocation strategies (centralized versus distributed, primary and

shadow threads, dynamic load balancing, hot backup versus checkpoint/rollback)

Software Project Management

 13

 Virtual machine constraints (file descriptors, garbage collection, heap size, maximum record size,
disk file rotations)

 Process-level concurrency issues (deadlock and race conditions)
 Platform-specific differences in performance or behavior

6.1.3 ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system description.
Early in the life cycle, precision is low and the representation is generally high. Eventually, the precision of
representation is high and everything is specified in full detail. Each phase of development focuses on a
particular artifact set. At the end of each phase, the overall system state will have progressed on all sets, as
illustrated in Figure 6-3.

The inception phase focuses mainly on critical requirements usually with a secondary focus on an initial
deployment view. During the elaboration phase, there is much greater depth in requirements, much more
breadth in the design set, and further work on implementation and deployment issues. The main focus of the
construction phase is design and implementation. The main focus of the transition phase is on achieving
consistency and completeness of the deployment set in the context of the other sets.

6.1.4 TEST ARTIFACTS
 The test artifacts must be developed concurrently with the product from inception through

deployment. Thus, testing is a full-life-cycle activity, not a late life-cycle activity.
 The test artifacts are communicated, engineered, and developed within the same artifact sets as the

developed product.
 The test artifacts are implemented in programmable and repeatable formats (as software

programs).
 The test artifacts are documented in the same way that the product is documented.
 Developers of the test artifacts use the same tools, techniques, and training as the software

engineers developing the product.
Test artifact subsets are highly project-specific, the following example clarifies the relationship between test
artifacts and the other artifact sets. Consider a project to perform seismic data processing for the purpose of

Software Project Management

 14

oil exploration. This system has three fundamental subsystems: (1) a sensor subsystem that captures raw
seismic data in real time and delivers these data to (2) a technical operations subsystem that converts raw
data into an organized database and manages queries to this database from (3) a display subsystem that
allows workstation operators to examine seismic data in human-readable form. Such a system would result
in the following test artifacts:

 Management set. The release specifications and release descriptions capture the objectives,
evaluation criteria, and results of an intermediate milestone. These artifacts are the test plans and
test results negotiated among internal project teams. The software change orders capture test
results (defects, testability changes, requirements ambiguities, enhancements) and the closure
criteria associated with making a discrete change to a baseline.

 Requirements set. The system-level use cases capture the operational concept for the system and
the acceptance test case descriptions, including the expected behavior of the system and its quality
attributes. The entire requirement set is a test artifact because it is the basis of all assessment
activities across the life cycle.

 Design set. A test model for nondeliverable components needed to test the product baselines is
captured in the design set. These components include such design set artifacts as a seismic event
simulation for creating realistic sensor data; a "virtual operator" that can support unattended, after-
hours test cases; specific instrumentation suites for early demonstration of resource usage;
transaction rates or response times; and use case test drivers and component stand-alone test
drivers.

 Implementation set. Self-documenting source code representations for test components and test
drivers provide the equivalent of test procedures and test scripts. These source files may also
include human-readable data files representing certain statically defined data sets that are explicit
test source files. Output files from test drivers provide the equivalent of test reports.

 Deployment set. Executable versions of test components, test drivers, and data files are provided.

6.2 MANAGEMENT ARTIFACTS
The management set includes several artifacts that capture intermediate results and ancillary
information necessary to document the product/process legacy, maintain the product, improve the
product, and improve the process.

Business Case
The business case artifact provides all the information necessary to determine whether the project is
worth investing in. It details the expected revenue, expected cost, technical and management plans, and
backup data necessary to demonstrate the risks and realism of the plans. The main purpose is to
transform the vision into economic terms so that an organization can make an accurate ROI assessment.
The financial forecasts are evolutionary, updated with more accurate forecasts as the life cycle
progresses. Figure 6-4 provides a default outline for a business case.

Software Development Plan
The software development plan (SDP) elaborates the process framework into a fully detailed plan. Two
indications of a useful SDP are periodic updating (it is not stagnant shelfware) and understanding and
acceptance by managers and practitioners alike. Figure 6-5 provides a default outline for a software
development plan.

Software Project Management

 15

Work Breakdown Structure
Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs. To monitor and control a
project's financial performance, the software project man1ger must have insight into project costs and how
they are expended. The structure of cost accountability is a serious project planning constraint.

Software Project Management

 16

Software Change Order Database
 Managing change is one of the fundamental primitives of an iterative development process. With greater
change freedom, a project can iterate more productively. This flexibility increases the content, quality, and
number of iterations that a project can achieve within a given schedule. Change freedom has been achieved
in practice through automation, and today's iterative development environments carry the burden of change
management. Organizational processes that depend on manual change management techniques have
encountered major inefficiencies.

Release Specifications
The scope, plan, and objective evaluation criteria for each baseline release are derived from the vision
statement as well as many other sources (make/buy analyses, risk management concerns, architectural
considerations, shots in the dark, implementation constraints, quality thresholds). These artifacts are intended
to evolve along with the process, achieving greater fidelity as the life cycle progresses and requirements
understanding matures. Figure 6-6 provides a default outline for a release specification

Release Descriptions
Release description documents describe the results of each release, including performance against each of
the evaluation criteria in the corresponding release specification. Release baselines should be accompanied
by a release description document that describes the evaluation criteria for that configuration baseline and
provides substantiation (through demonstration, testing, inspection, or analysis) that each criterion has been
addressed in an acceptable manner. Figure 6-7 provides a default outline for a release description.

Status Assessments
Status assessments provide periodic snapshots of project health and status, including the software project
manager's risk assessment, quality indicators, and management indicators. Typical status assessments should
include a review of resources, personnel staffing, financial data (cost and revenue), top 10 risks, technical
progress (metrics snapshots), major milestone plans and results, total project or product scope & action items

Software Project Management

 17

Environment
An important emphasis of a modern approach is to define the development and maintenance environment as
a first-class artifact of the process. A robust, integrated development environment must support automation
of the development process. This environment should include requirements management, visual modeling,
document automation, host and target programming tools, automated regression testing, and continuous and
integrated change management, and feature and defect tracking.

Deployment
A deployment document can take many forms. Depending on the project, it could include several document
subsets for transitioning the product into operational status. In big contractual efforts in which the system is
delivered to a separate maintenance organization, deployment artifacts may include computer system
operations manuals, software installation manuals, plans and procedures for cutover (from a legacy system),
site surveys, and so forth. For commercial software products, deployment artifacts may include marketing
plans, sales rollout kits, and training courses.

Management Artifact Sequences
In each phase of the life cycle, new artifacts are produced and previously developed artifacts are updated to
incorporate lessons learned and to capture further depth and breadth of the solution. Figure 6-8 identifies a
typical sequence of artifacts across the life-cycle phases.

Software Project Management

 18

Software Project Management

 19

6.3 ENGINEERING ARTIFACTS
Most of the engineering artifacts are captured in rigorous engineering notations such as UML, programming
languages, or executable machine codes. Three engineering artifacts are explicitly intended for more general
review, and they deserve further elaboration.

Vision Document
The vision document provides a complete vision for the software system under development and. supports
the contract between the funding authority and the development organization. A project vision is meant to be
changeable as understanding evolves of the requirements, architecture, plans, and technology. A good vision
document should change slowly. Figure 6-9 provides a default outline for a vision document.

Architecture Description

The architecture description provides an organized view of the software architecture under development. It
is extracted largely from the design model and includes views of the design, implementation, and
deployment sets sufficient to understand how the operational concept of the requirements set will be
achieved. The breadth of the architecture description will vary from project to project depending on many
factors. Figure 6-10 provides a default outline for an architecture description.

Software Project Management

 20

Software User Manual
The software user manual provides the user with the reference documentation necessary to support the
delivered software. Although content is highly variable across application domains, the user manual should
include installation procedures, usage procedures and guidance, operational constraints, and a user interface
description, at a minimum. For software products with a user interface, this manual should be developed
early in the life cycle because it is a necessary mechanism for communicating and stabilizing an important
subset of requirements. The user manual should be written by members of the test team, who are more likely
to understand the user's perspective than the development team.

6.4 PRAGMATIC ARTIFACTS
People want to review information but don't understand the language of the artifact. Many interested
reviewers of a particular artifact will resist having to learn the engineering language in which the artifact is
written. It is not uncommon to find people (such as veteran software managers, veteran quality assurance
specialists, or an auditing authority from a regulatory agency) who react as follows: "I'm not going to learn
UML, but I want to review the design of this software, so give me a separate description such as some
flowcharts and text that I can understand."
People want to review the information but don't have access to the tools. It is not very common for the
development organization to be fully tooled; it is extremely rare that the/other stakeholders have any
capability to review the engineering artifacts on-line. Consequently, organizations are forced to exchange
paper documents. Standardized formats (such as UML, spreadsheets, Visual Basic, C++, and Ada 95),
visualization tools, and the Web are rapidly making it economically feasible for all stakeholders to exchange
information electronically.
Human-readable engineering artifacts should use rigorous notations that are complete, consistent,
and used in a self-documenting manner. Properly spelled English words should be used for all identifiers
and descriptions. Acronyms and abbreviations should be used only where they are well accepted jargon in
the context of the component's usage. Readability should be emphasized and the use of proper English words
should be required in all engineering artifacts. This practice enables understandable representations, browse
able formats (paperless review), more-rigorous notations, and reduced error rates.
Useful documentation is self-defining: It is documentation that gets used.
Paper is tangible; electronic artifacts are too easy to change. On-line and Web-based artifacts can be
changed easily and are viewed with more skepticism because of their inherent volatility.

Unit – III Important questions
1. Explain briefly two stages of the life cycle engineering and production.
2. Explain different phases of the life cycle process?

3. Explain the goal of Inception phase, Elaboration phase, Construction phase and
Transition phase.

4. Explain the overview of the artifact set

5. Write a short note on
(a) Management Artifacts (b) Engineering Artifacts (c) Pragmatic Artifacts

